The N-terminal copper-binding domain of the amyloid precursor protein protects against Cu2+ neurotoxicity in vivo.

نویسندگان

  • Waldo F Cerpa
  • María I Barría
  • Marcelo A Chacón
  • Miriam Suazo
  • Mauricio González
  • Carlos Opazo
  • Ashley I Bush
  • Nibaldo C Inestrosa
چکیده

The amyloid precursor protein (APP) contains a Cu binding domain (CuBD) localized between amino acids 135 and 156 (APP135-156), which can reduce Cu2+ to Cu1+ in vitro. The physiological function of this APP domain has not yet being established; nevertheless several studies support the notion that the CuBD of APP is involved in Cu homeostasis. We used APP synthetic peptides to evaluate their protective properties against Cu2+ neurotoxicity in a bilateral intra-hippocampal injection model. We found that human APP135-156 protects against Cu2+-induced neurotoxic effects, such as, impairment of spatial memory, neuronal cell loss, and astrogliosis. APP135-156 lacking two histidine residues showed protection against Cu2+; however, APP135-156 mutated in cysteine 144, a key residue in the reduction of Cu2+ to Cu1+, did not protect against Cu2+ neurotoxicity. In accordance with recent reports, the CuBD of the Caenorhabditis elegans, APL-1, protected against Cu2+ neurotoxicity in vivo. We also found that Cu2+ neurotoxicity is associated with an increase in nitrotyrosine immunofluorescence as well as with a decrease in Cu2+ uptake. The CuBD of APP therefore may play a role in the detoxification of brain Cu.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Contrasting, species-dependent modulation of copper-mediated neurotoxicity by the Alzheimer's disease amyloid precursor protein.

The amyloid precursor protein (APP) of Alzheimer's disease (AD) has a copper binding domain (CuBD) located in the N-terminal cysteine-rich region that can strongly bind copper(II) and reduce it to Cu(I) in vitro. The CuBD sequence is similar among the APP family paralogs [amyloid precursor-like proteins (APLP1 and APLP2)] and its orthologs (including Drosophila melanogaster, Xenopus laevis, and...

متن کامل

Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer's disease.

Alzheimer's disease is thought to be triggered by production of the amyloid beta (Abeta) peptide through proteolytic cleavage of the amyloid precursor protein (APP). The binding of Cu2+ to the copper-binding domain (CuBD) of APP reduces the production of Abeta in cell-culture and animal studies. It is expected that structural studies of the CuBD will lead to a better understanding of how copper...

متن کامل

A reassessment of copper(II) binding in the full-length prion protein.

It has been shown previously that the unfolded N-terminal domain of the prion protein can bind up to six Cu2+ ions in vitro. This domain contains four tandem repeats of the octapeptide sequence PHGGGWGQ, which, alongside the two histidine residues at positions 96 and 111, contribute to its Cu2+ binding properties. At the maximum metal-ion occupancy each Cu2+ is co-ordinated by a single imidazol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 18 14  شماره 

صفحات  -

تاریخ انتشار 2004